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ABSTRACT 

In practical soil-structure analysis a number of basic issues need to be addressed. First, the 
soil-structure interaction problems are generally of a very large size. A suitable transformation 
should therefore be used to reduce the size of the problem. Second, analysis in the frequency 
domain, which is the preferred method for problems involving wave propagation in an infinite 
soil medium, usually requires the application of discrete Fourier transformation. The use of such 
transformation often leads to unacceptable errors caused by aliasing or overlapping. Analytical 
techniques that address these issues are presented here. A set of Ritz vectors based on the concept 
of component mode synthesis is developed for the transformation of the interaction problem. The 
method of artificial damping, developed by two of the authors, and reported earlier, is applied in 
the solution. The effectiveness of these techniques is illustrated by means of a simple example of 
soil-structure interaction. 

INTRODUCTION 

Seismic analysis of soil-structure interaction problems based on substructure method is usu-
ally carried out in the frequency domain. This is because frequency domain analysis is most 
effective in treating the problem of wave propagation in the semi-infinite regular soil region. Also, 
with the use of Fast Fourier Transform (FFT), frequency domain analysis becomes computation-
ally very efficient. Finally, when the Boundary Element Method (BEM) is used in the analysis, 
the fundamental solution for the soil region is much simpler in the frequency domain than in the 
time domain. 

Although many researchers have studied the frequency domain analysis of soil-structure 
interaction, a number of problems still exist in the analysis procedure. The soil-structure inter-
action problems are normally of very large size. This is partly because the soil region is of an 
infinite extent; as a result, its discretization contributes a large number of degrees of freedom. 
A proper modelling of the soil region to  minimize the degrees of freedom in association with a 
suitable transformation is required to reduce the size of the problem. Mode shapes of the soil-
structure system have been used in the past as Ritz vectors defining the transformation. However, 
when BEM is used to model the soil, the resulting transformed matrices are unsymmetric and 
the transformation method is not particularly efficient. The use of partial mode shapes of the 
structure on a fixed base along with rigid body displacements of the foundation has been found 
to give substantial errors (Vaish and Chopra, 1973). A new set of Ritz vectors are used in this 
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study and are found to be quite effective. These Ritz vectors comprise fixed-base normal modes 
of the superstructure and static constraint modes obtained by applying a unit displacement, in 
turn, to each degree of freedom on the soil structure interface. 

Another source of problem in the frequency domain analysis of the interaction problem is the 
error associated with the use of Discrete Fourier Transforms (DFT), particularly when damping 
in the system is low. This error is caused by overlapping or aliasing. An unnecessarily long 
period of time must be used in the analysis to minimize this error. A novel method of avoiding 
this problem, referred to as the Artificial Damping Method, was published by two of the present 
authors (Humar and Xia, 1993) and simultaneously by Kausel and Roesset (1992) who called it 
the Exponential Window Method. The method of artificial damping is applied in the present 
work for the frequency domain analysis of soil-structure interaction problem and is shown to be 
very effective and efficient. 

FORMULATION OF THE SOIL-STRUCTURE INTERACTION PROBLEM 

The formulation of the equation of motion for a soil-structure system has been adequately 
described in the literature (Vaish and Chopra, 1973; Wolf, 1985). The equations of motion relating 
the response to a specific free field input can be expressed as (Wolf, 1985) 

(_Q2 [M.. M,b1 + C0,1 [K„ K, 11 [V,(n)1 _ [M„ 
MM::1 {iTV:o0 ] L Mbs Mbb J L Cbbj L Kb, Kbh  S ji (0) LVb(52).1 

(1) 
where, M, C and K are respectively the mass, damping and stiffness matrices for the superstruc-
ture and S 1 1(n) is the frequency dependent soil impedance matrix. Subscript s represents the 
superstructure degrees of freedom, while b represents the base degrees of freedom that lie along 
the interface between the soil and the structure. Also, V0  represents the pseudo-static displace-
ments caused by the free-field ground motions while V represents the displacements relative to 
the pseudo-static displacements. The soil impedance matrix, S fj (12), may be obtained by a finite 
element or a boundary element method (Xia, 1994). This matrix is in general unsymmetric when 
the BEM is used. 

The dynamic problem represented by Eq. 1 is of large size, its solution therefore involves a 
large volume of computation. It is possible to reduce the size of the problem by a Ritz transfor-
mation given by 

V(R) = XZ(S2) (2) 

in which X is the matrix of Ritz vectors and Z(S2) are the generalized coordinates. The size of X 
is N x M where, N is the total number of structure degrees of freedom and M is the number of 
Ritz vectors. The transformed equations are 

[—SPM.  + + K' + L(n)] z(o) = -xTmi•To (3) 

where M' = XTMX, C• = XTCX, K' = XTKX, and 

L(12) = XT [00 s0
ff 

 I X = XTS f fXb (4) 

in which Xb  is obtained from X by taking the rows corresponding to interface degrees of freedom. 
The complex frequency response functions denoted by H(S2) is then obtained from 

[—S22M* + MC* + K' L(Q)] H(S2) = —XTF (5) 
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where F is either Fh = Mrh  or F, = Mr„, rh  represents the static displacements caused by a unit 
horizontal displacement along the free field and r„ represents the static displacements caused by 
a unit vertical displacement of the free field. 

The Ritz vectors to be used in the transformation of Eq. 1 can be obtained by using the 
following modified stiffness matrix 

1K„ K,6 1 (6) 
LK6s Kbb Sj f (0)) 

where e(S2) is a very small value of 11. The Ritz vectors are the mode shapes generated by solving 
the eigenvalue problem given by 

(-“,2  m + )x = o (7) 

SUBSTRUCTURE COUPLING USING RITZ VECTORS 

When Sf f is obtained by BEM, the modified stiffness matrix I< in Eq. 7 is an unsym-
metric matrix. Therefore, a half bandwidth storage of K is not possible, neither is the LDLT  
decomposition. It is well known that symmetry of stiffness matrix can lead to considerable saving 
in computing time required in generating Ritz vectors. It is a drawback of using K that such 
economy can not be realized. The shortcomings cited above can be avoided if the Ritz reduction 
is applied only to a part of the soil-structure system. The idea of using mode shapes of a part 
of the soil-structure system, in particular the mode shapes of the superstructure on a fixed base 
in association with the displaced shapes produced by rigid body motions of the foundation, has 
been suggested by several researchers (Vaish and Chopra, 1973; Guiterrez and Chopra, 1978). 
However, when the foundation is flexible, significant errors are introduced by the use of such 
mode shapes. The authors believe that these errors are not, in fact, caused by the use of partial 
mode shapes of the system, but because of the assumption of a rigid body displacement for the 
degrees of freedom of the foundation. A new technique is used here to avoid such an assumption 
and an alternative set of effective partial (component) Ritz vectors is presented. 

In Eq. 1, the complete stiffness matrix K is singular with rigid body motion included. 
However, submatrix K„ is not singular. Let X, be the mode shapes generated by using the 
stiffness matrix of the superstructure with all the supports fixed. These mode shapes are obtained 
by solving the following eigenvalue problem 

(—n2m., + K..)x. = 0 (8) 

Matrix K„ is usually a positive definite, symmetric and sparse matrix. These properties 
allow the use of half bandwidth storage and LDLT  decomposition and thus greatly enhance the 
computing efficiency particularly when the order of matrix K„ is large. 

A set of Ritz vectors that contains the partial Ritz vectors X, may be expressed as 

Y 

= X, X,1 

0 

in which matrix [X, LIT represents the displacements at the structure and interface degrees of 
freedom caused by a unit displacement, applied in turn, to each of the degrees of freedom at the 
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soil-structure interface. The matrix just referred to, in fact, consists of a set of so called constraint 
modes or Ritz vectors (Craig and Chang, 1976) and are obtained from 

xei_ (10)  
Ib

K

Ib 

The transformation described above is based on the concept of component mode synthesis and is 
different from the one used by Vaish and Chopra (1973). The Ritz vectors in Eq. 9 reduce the size 
of only one substructure keeping the number of degrees of freedom of another substructure (soil 
foundation) intact. If the number of interface nodes is comparatively large, a two stage reduction 
can be used. The Ritz vectors to be used in the second stage transformation are evaluated by 
solving the following eigenvalue problem 

+ i() Q = o (11) 

where Ic1 = YTWY, IC = YT [K" L(e(Q))1Y. 

The generation of component Ritz vectors, X, in Eq. 9 requires information related to the 
superstructure only and is not dependent on a knowledge of the properties of foundation soil. 
Matrix X, thus needs to be obtained only once from M„ and K,,, respectively the mass and 
stiffness matrices for the superstructure with the interface nodes fixed. 

METHOD OF ARTIFICIAL DAMPING 

It is well known that frequency domain analysis based on the use of Discrete Fourier Trans-
forms (DFT) does not always provide accurate results for the dynamic response of the structure 
(Humar and Xia, 1993). If sufficient damping does not exist in the system, the response ob-
tained by using the DFT may be in severe error because of overlapping or aliasing. Soil-structure 
systems may be subjected to this problem. To ensure that the correct response is obtained for 
the soil-structure system obtained, the method of artificial damping could be used instead of the 
standard DFT method. As explained in Humar and Xia (1993), the use of artificial damping 
requires the evaluation of modified frequency response functions ii(Q) which are related to H(Q) 
by the expression 

H(S2) = H(11 — ia) (12) 

where a is an arbitrarily selected parameter and i is the imaginary number. This also requires 
the evaluation of soil impedance matrix S11  for the imaginary frequency Q — ia. When the BEM 
method is used to obtain soil impedance, all that is required is to evaluate the Bessel functions 
involved in the analysis for (St — ia) in place of Q. 

An infinite domain of soil does provide a certain amount of damping in the system through 
radiation of waves to infinity. This implies that the standard DFT method can also be used, 
provided a sufficiently long period is selected in the analysis. The procedure is, however, inefficient 
as compared to the method of artificial damping. 

EXAMPLE PROBLEM 

As an example of the application of techniques described in this paper, the five story frame 
shown in Fig. la is analyzed for its responses to earthquake motion. To focus attention on 
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the effectiveness of the techniques proposed, the soil is represented by concentrated springs and 
viscous dampers located along the interface degrees of freedom. The soil impedance matrix is, in 
this case, independent of the excitation frequency. 

The frame shown in Fig. la has 72 degrees of freedom, three at each node. The following 
properties are used for all members of the frame: modulus of elasticity E = 2. x 1010  N/m2, area 
of cross-section A = 0.36 m2, moment of inertia I = 0.0108 m4, and mass density p = 2400 kg/m3. 
Each horizontal spring representing the soil has a spring constant of 7 x 106  N/m and each vertical 
spring has a constant of 8 x 106  N/m. The damping constants for the dampers representing the soil 
are 0.002 times the stiffnesses of the parallel springs. The damping matrix for the superstructure 
is assumed to be 0.002 times its stiffness matrix. The structure is subjected to a constant free 
field acceleration of magnitude 10 m/s2  lasting for 4 s as shown in Fig lb. 

A time domain solution of the structure using the full 72 degrees of freedom. is compared in 
Fig. 2 with frequency domain solutions obtained by (1) standard DFT technique, and (2) by using 
the method of artificial damping. The response quantity plotted is the horizontal displacement 
at Node 1 relative to the free field didplacement. For analysis in the frequency domain, the total 
time period To  is taken to be 12.775 s with a sampling interval of 0.025 s, giving 512 sample 
points. In the method of artificial damping, a is taken as 0.36. The unit impulse function h(t) 
obtained by taking the inverse transform of H(11) is truncated at 6.375 s, hence the frequency 
domain solution is expected to be valid up to 6.375 s. From Fig. 2 it is clear that for the selected 
value of To  the standard DFT method fails due to aliasing errors while the method of artificial 
damping provides results that are almost indistinguishable from the exact results. 

In Fig. 3 the exact time domain solution is compared with the frequency domain solution 
of a reduced system. Again, the response quantity shown is the relative horizontal displacement 
of Node 1. The frequency domain solution uses the method of artificial damping. Two different 
procedures are used in reducing the system. In one procedure 7 normal modes of the structure 
on a fixed base along with 3 displaced shapes produced by rigid body motions of the foundation 
are used to transform the equations of motion. The results obtained by this procedure are in 
serious error. Analysis by this procedure took a cpu time of 159 s on a Sparc ELC workstation. 
In another procedure 2 fixed base normal modes of the structure are used in association with 
12 constraint modes. A second stage transformation using the modes obtained from Eq. 11 is 
applied and only 7 of the second stage vectors are used in the final analysis. The results obtained 
by this procedure are almost identical to the exact results. The cpu time required in the analysis 
was 100 s for this case. 

The soil-structure system was also analyzed by using the mode shapes of the total system 
for transforming the equations of motion. In all 10 modes were required to obtain an accuracy 
comparable to that obtained by using normal modes in association with constraint modes. This 
cpu time required in the analysis was 187 s. 

It is evident from the results presented that a transformation which uses fixed-base normal 
modes in association with constraint modes is quite effective and that the method of artificial 
damping is successful in eliminating aliasing errors in a discrete Fourier Transform analysis. 
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SUMMARY AND CONCLUSIONS 

A procedure is suggested for the analysis of soil-structure system, in which the system of 
equations is reduced by a transformation that uses a few normal modes of the structure on a fixed 
base in association with static constraint modes obtained by applying a unit displacement, in turn, 
along each of the interface degrees of freedom. Analysis is performed in the frequency domain 
using the method of artificial damping. An example is presented to show that the suggested 
transformation is quite effective. Also, the method of artificial damping significantly improves 
the efficiency of frequency domain analysis. Similar conclusions have been arrived at by Xia (1993) 
who presents an example in which the soil region is taken to be an infinite half space modelled 
by BEM. 
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Fig. 2. Time and frequency domain solution of full structure. 
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Fig. 3. Comaprison of the response of a reduced system with the exact response. 
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